The ubiquitin-protein ligase Nedd4 targets Notch1 in skeletal muscle and distinguishes the subset of atrophies caused by reduced muscle tension.

نویسندگان

  • Alan Koncarevic
  • Robert W Jackman
  • Susan C Kandarian
چکیده

Ubiquitination-dependent proteolysis is a fundamental process underlying skeletal muscle atrophy. Thus, the role of ubiquitin ligases is of great interest. There are no focused studies in muscle on the ubiquitin ligase Nedd4. We first confirmed increased mRNA expression in rat soleus muscles due to 1-14 days of hind limb unloading. Nedd4 protein localized to the sarcolemmal region of muscle fibers. Hind limb unloading, sciatic nerve denervation, starvation, and diabetes led to atrophy of soleus, plantaris, and gastrocnemius muscles, but only unloaded and denervated muscles showed a marked increase in Nedd4 protein expression. This increase was strongly correlated with decreased Notch1 expression, a known target of Nedd4 in other cell types. Overexpression of dominant negative Nedd4 in soleus muscles completely reversed the unloading-induced decrease of Notch1 expression, indicating that Nedd4 is required for Notch1 inactivation. Overexpression of wild-type Nedd4 in soleus muscles of weight bearing rats caused a decrease in Notch1 protein, indicating that Nedd4 is sufficient for Notch1 down-regulation. To further show that Notch1 is a Nedd4 substrate in muscle, conditional overexpression of Nedd4 in C2C12 myotubes induced ubiquitination of Notch1. This is the first finding of a Nedd4 substrate in muscle and of an ubiquitin ligase, the activity of which distinguishes disuse from cachexia atrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ubiquitin Ligase Nedd4-1 Participates in Denervation-Induced Skeletal Muscle Atrophy in Mice

Skeletal muscle atrophy is a consequence of muscle inactivity resulting from denervation, unloading and immobility. It accompanies many chronic disease states and also occurs as a pathophysiologic consequence of normal aging. In all these conditions, ubiquitin-dependent proteolysis is a key regulator of the loss of muscle mass, and ubiquitin ligases confer specificity to this process by interac...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

The E3 ubiquitin ligase Nedd4/Nedd4L is directly regulated by microRNA 1.

miR-1 is a small noncoding RNA molecule that modulates gene expression in heart and skeletal muscle. Loss of Drosophila miR-1 produces defects in somatic muscle and embryonic heart development, which have been partly attributed to miR-1 directly targeting Delta to decrease Notch signaling. Here, we show that overexpression of miR-1 in the fly wing can paradoxically increase Notch activity indep...

متن کامل

The inositol phosphatase MTMR4 is a novel target of the ubiquitin ligase Nedd4

The inositol phosphatase, MTMR4 (myotubularin-related protein 4), was identified as a novel interactor of the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4). hMTMR4 (human MTMR4) and Nedd4 co-immunoprecipitated and co-localized to late endosomes. The PY (Pro-Tyr) motif of hMTMR4 binds to WW (Trp-Trp) domains of hNedd4. MTMR4 expression was decreased in...

متن کامل

Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I.

Muscle-specific RING finger protein 1 (MuRF1) is a sarcomere-associated protein that is restricted to cardiac and skeletal muscle. In skeletal muscle, MuRF1 is up-regulated by conditions that provoke atrophy, but its function in the heart is not known. The presence of a RING finger in MuRF1 raises the possibility that it is a component of the ubiquitin-proteasome system of protein degradation. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2007